Functional equations for orbifold wreath products

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Orbifold Cohomology of a Wreath Product Orbifold

Abstract. Let [X/G] be an orbifold which is a global quotient of a compact almost complex manifold X by a finite group G. Let Σn be the symmetric group on n letters. Their semidirect product G ⋊ Σn is called the wreath product of G and it naturally acts on the n-fold product X, yielding the orbifold [X/(G ⋊Σn)]. Let H (X , G ⋊Σn) be the stringy cohomology [FG, JKK1] of the (G ⋊ Σn)-space X . Wh...

متن کامل

Knapsack Problems for Wreath Products

In recent years, knapsack problems for (in general non-commutative) groups have attracted attention. In this paper, the knapsack problem for wreath products is studied. It turns out that decidability of knapsack is not preserved under wreath product. On the other hand, the class of knapsack-semilinear groups, where solutions sets of knapsack equations are effectively semilinear, is closed under...

متن کامل

Zonal polynomials for wreath products

The pair of groups, symmetric group S2n and hyperoctohedral group Hn , form a Gelfand pair. The characteristic map is a mapping from the graded algebra generated by the zonal spherical functions of (S2n, Hn) into the ring of symmetric functions. The images of the zonal spherical functions under this map are called the zonal polynomials. A wreath product generalization of the Gelfand pair (S2n, ...

متن کامل

Compression bounds for wreath products

We show that if G and H are finitely generated groups whose Hilbert compression exponent is positive, then so is the Hilbert compression exponent of the wreath G ≀ H . We also prove an analogous result for coarse embeddings of wreath products. In the special case G = Z, H = Z ≀ Z our result implies that the Hilbert compression exponent of Z ≀ (Z ≀ Z) is at least 1/4, answering a question posed ...

متن کامل

Wreath products for edge detection

Wreath product group based spectral analysis has led to the development of the wreath product transform, a new multiresolution transform closely related to the wavelet transform. In this work, we derive the lter bank implementation of a simple wreath product transform and show that it is in fact, a multiresolution Roberts Cross edge detector. We also derive the relationship between this transfo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Geometry and Physics

سال: 2017

ISSN: 0393-0440

DOI: 10.1016/j.geomphys.2017.05.013